In vivo hepatic differentiation potential of human cord blood-derived mesenchymal stem cells.
نویسندگان
چکیده
Although recent studies have demonstrated the in vitro hepatic differentiation potential of mesenchymal stem cells (MSCs), the evidence supporting the in vivo engraftment of MSCs, hepatic differentiation and improvement of hepatic function is still lacking. We investigated in vivo hepatic differentiation potential and therapeutic effect of cord blood derived-MSCs (CBMSCs) transplantation in a cirrhotic rat model. CBMSCs (2 x 10(6)) were infused in Wistar rats with thioacetamide-induced chronic liver injury. Biochemical markers, liver fibrosis and engraftment of CBMSCs were assessed. Infused CBMSCs were detected in the perivascular or fibrous region of the liver and did not acquire mature hepatic phenotypes. There was no difference in biochemical markers and in the area of liver fibrosis between the experimental and placebo groups. After infusion of CBMSCs in our experimental cirrhotic rat model we did not observe an improvement of liver function and liver fibrosis. Inversely, CBMSCs could have a pro-fibrogenic potential suggesting that a cautious approach is required in future research.
منابع مشابه
A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملImproving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions
Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...
متن کاملStudy of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells
In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...
متن کاملMale germ-like cell differentiation potential of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid
Objective(s):Mesenchymal stem cells (MSCs) derived from Wharton’s jelly (WJ-MSCs) are now much more appealing for cell-based infertility therapy. Hence, WJ-MSCs differentiation toward germ layer cells for cell therapy purposes is currently under intensive study. Materials and Methods: MSCs were isolated from human Wharton’s jelly and treated with BMP4, retinoic acid (RA) or co-cultured on huma...
متن کاملCo-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds
Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of molecular medicine
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2011